
Rearrangement of 3-Alkyl-1-allylindoles: a Model Reaction for the Biogenesis of Echinulin-type Compounds

By G. CASNATI* and A. POCHINI

(Istituto di Chimica Organica, Università, 43100 Parma, Italy)

Summary The reactivity of 3-alkyl-1-allylindoles as model systems in the biogenesis and synthesis of the echinulintype compounds has been studied: in the presence of acids the crotyl and $\gamma\gamma$ -dimethylallyl groups migrate from the 1- to the 2-position of the indole nucleus with a partial allylic rearrangement.

THE problem of the mechanism of insertion of an $\alpha\alpha$ -dimethylallyl chain at the 2-position of the indole nucleus is of interest, especially in regard to the synthesis and biogenesis of echinulin,¹ neoechinulin,² and the brevianamides A and E.³ In the case of echinulin this biogenetic mechanism has been proved to proceed *via* mevalonic acid.⁴

Different biogenetic mechanisms involving either a direct attack $(S_N 2' \text{ type})$ of the $\gamma\gamma$ -dimethylallyl group at the 2-position of the indole system or a primary attack at positions 3 or 1, followed by rearrangement, have been suggested.⁵ Several studies, carried out with model

systems, seem to exclude the hypothesis of both a primary attack at the 3-position^{5a} and a direct attack (S_N2' type) at the 2-position.⁶

In order to examine the third possibility (the 1-2-rearrangement of the allylic chain) we have studied the reactivity of $1-\gamma\gamma$ -dimethylallyl-3-alkylindoles as model systems in the biogenesis and synthesis of the echinulin-type compounds.

An acid-catalysed rearrangement of the isoprene chain from the 1- to the 2-position of the indole nucleus, together with a partial rearrangement of the allyl chain, was observed for the first time. In this way, $1-\gamma\gamma$ -dimethylallyl-3methylindole (I) rearranges to $2-\alpha\alpha$ -dimethylallyl-3-methylindole (III) and to $2-\gamma\gamma$ -dimethylallyl-3-methylindole (II) (see Table 1).

TABLE 1.

Acid-catalysed rearrangement of $1-\gamma\gamma$ -dimethylallyl-3-methylindole

Acid	lime (h)	% (11)*	% (111) *
CF ₃ CO ₂ H°	 1	70	30
CF ₈ CO ₂ H ^b	 24	50	50
$CF_{3}CO_{2}H^{d}$	 144	35	65
BF ₃ in diethyl ether ^b	 24	50	50
SnCl ₄ in hexane ^b	 72	65	35
AlCl ₃ in hexane ^b	 72	75	25

^a $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = Me$; Relative weight % composition, excluding unreacted compound. ^b At room temperature. ^c In refluxing CF₃CO₂H. ^d At 0°.

The reaction was further studied with the compounds (Ia, b, c), in CF_3CO_2H at room temperature for 48 h, and a remarkable increase of the yields was observed: allyl $< < \operatorname{crotyl}_{\gamma\gamma}$ -dimethylallyl (see Table 2).

In fact compound (Ia) (1-allyl-3-methylindole) does not react at all, while compound (Ib) (1-crotyl-3-methylindole)

TABLE	2
-------	----------

Rearrangement in CF ₃ CO ₂ H of 3-alkyl-1-allylindoles									
	R¹	$\mathbf{R^2}$	\mathbf{R}^{3}	% (I)	% (II)	% (III)	% (II) : % (III)		
a	н	н	Me	100					
b	Me	н	Me	36	14	36ª	27:73		
с	Me	Me	Me		50	50	50:50		
d	Me	Me	Pr ⁿ	3	52	45	56:44		

^a Other products: 14%.

reacts more slowly than (Ic) (1-yy-dimethylallyl-3-methylindole). However in the case of (Ib) a higher ratio between the product with the $\alpha\alpha$ -dimethylallyl group (IIIb) and the compound with the $\gamma\gamma$ -dimethylallyl group (IIb) was observed. Generally, whenever the reactions in CF₃CO₂H are carried out under lower-reactivity conditions (low temperature and in the presence of allylic substituents with slower rearrangement rates), an increase of the allylic rearrangement [i.e. formation of compound (III)] is observed.

The influence of the nature of the acid appears to be quite complex. Positive results were obtained with both Lewis (BF₃, AlCl₃, SnCl₄) and protic acids (CF₃CO₂H), while in sulphuric acid solutions at different concentrations the rearrangement products were obtained in very low yields.

The presence of a bulkier substituent at the 3-position of the indole system [as in compound (Id)] slightly modifies the reaction rate and the ratio between (IIId) and (IId).

Finally, in order to check whether the reaction occurs with an inter- or an intra-molecular mechanism, two experiments with mixtures of (Ic) and skatole and of (Ic) and (Id) were carried out in CF_3CO_2H . In neither case was any product from a cross-reaction found. These results seem to be consistent with an intramolecular process, but without excluding completely the possibility of an intermolecular mechanism.

(Received, August 10th, 1970; Com. 1341.)

- ² M. Barbetta, G. Casnati, A. Pochini, and A. Selva, Tetrahedron Letters, 1969, 4457.

- ³ A. J. Birch and J. J. Wright, Tetrahedron, 1970, 26, 2329.
 ⁴ A. J. Birch, G. E. Blanche, S. David, and H. Smith, J. Chem. Soc., 1961, 3128.
 ⁵ (a) A. H. Jackson and A. E. Smith, Tetrahedron, 1965, 21, 989; (b) A. J. Birch and K. R. Farrar, J. Chem. Soc., 1963, 4277.
- G. Casnati, M. Francioni, A. Guareschi, and A. Pochini, Tetrahedron Letters, 1969, 2485.

¹G. Casnati, A. Ouilico, and A. Ricca, Gazzetta, 1962, 92, 128, and refs. therein.